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The Great Dismal Swamp (GDS) National Wildlife Refuge delivers multiple ecosystem services, including
air quality and human health via fire mitigation. Our analysis estimates benefits of this service through
its potential to reduce catastrophic wildfire related impacts on the health of nearby human populations.
We used a combination of high-frequency satellite data, ground sensors, and air quality indices to
determine periods of public exposure to dense emissions from a wildfire within the GDS. We examined
emergency department (ED) visitation in seven Virginia counties during these periods, applied measures
of cumulative Relative Risk to derive the effects of wildfire smoke exposure on ED visitation rates, and
estimated economic losses using regional Cost of Illness values established within the US Environmental
Protection Agency BenMAP framework. Our results estimated the value of one avoided catastrophic
wildfire in the refuge to be $3.69 million (2015 USD), or $306 per hectare of burn. Reducing the frequency
or severity of extensive, deep burning peatland wildfire events has additional benefits not included in
this estimate, including avoided costs related to fire suppression during a burn, carbon dioxide emissions,
impacts to wildlife, and negative outcomes associated with recreation and regional tourism. We suggest
the societal value of the public health benefits alone provides a significant incentive for refuge mangers

to implement strategies that will reduce the severity of catastrophic wildfires.

Published by Elsevier Ltd.

1. Introduction

Ecosystem Services are the benefits provided by the natural
environment that are of value to human populations. Ecosystem
services are threatened by development, pollution, fragmentation,
overexploitation of resources, and climate change. As part of a
multi-year study on the ecosystem services of the Great Dismal
Swamp (GDS) National Wildlife Refuge, the U.S. Geological Survey,
in coordination with the U.S. Fish and Wildlife Service, examined
the economic implications of health effects related to a catastrophic
peat fire. The GDS is a highly-altered system that has been ditched,
drained, and logged, all of which may be increasing the frequency
and severity of wildfires (Reddy et al., 2015). Sleeter et al. (2017)
provides an in depth discussion of the current and desired states
of carbon stock/flow, vegetation, and soil moisture in the GDS. A
series of water control structures were installed in the GDS's
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ditches which allow refuge managers to actively manage water
levels and potentially optimize soil moisture. This hydrologic
management is expected to result in multiple benefits including
additional carbon sequestration, restoration of desired vegetation
communities, and reduction of the duration and severity of wild-
fires (Reddy et al., 2015).

Benefits of a fire mitigation ecosystem service are closely linked
to the health and hydrology of the soils within a peatland
ecosystem. Periodic surface wildfires play a critical role in healthy
peatland vegetation communities by helping perpetuate native
trees including Atlantic White Cedar and pond pine (Sleeter et al.,
2017; Reddy et al., 2015; Laderman et al., 1989). Conversely, cata-
strophic wildfire in a peatland is often associated with low water
levels, and characterized by long-burning ground fires deep within
the peat (>0.5 m) that release large quantities of carbon into the
atmosphere (Reddy et al., 2015). Fire events of this magnitude are
considered extremely damaging to the ecosystem; it is in this
context that we describe these fires as 'catastrophic'. The GDS has
experienced low water levels due to centuries of drainage and
human disturbance. In this paper, we investigate the public health
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benefits of avoided catastrophic peat wildfires through improved
hydrologic management, and the implication for adjacent human
populations. We used the cost of illness (COI) as a lower bound
indicator of the economic value of reducing wildfire severity and
frequency.

In recent years, two catastrophic wildfires burned large areas
within the refuge, producing dense smoke plumes that moved into
neighboring communities. The South One Fire of 2008 (SOF) was
ignited by heavy machinery, burning from June 9th through
October 13th and spanned an estimated 1976 ha. During the 121-
day burn, the cost of fire suppression exceeded twelve million
dollars and distributed smoke into the popular Hampton Roads
area of southeastern Virginia, home to an estimated two million
people (US Census, 2010). In 2011, the Lateral West Fire, ignited by a
lightning strike, swept through the same footprint as the SOF
burning an estimated 2630 ha over the course of 111 days. Both fires
quickly destroyed aboveground vegetation, while concurrently
burning deep into the organic peat soils with an average fire depth
of 0.8—1.1 m (Reddy et al., 2015). Under current conditions, fires
similar to this magnitude and duration are expected to recur twice
every 100 years - an annual probability of 2% (MTBS, 2014). Our
analysis focused on the SOF due to the availability of emergency
department data; we considered the SOF economic costs as a proxy
for avoiding similar catastrophic events in the GDS.

Peat soils, such as those in the refuge, have been shown to
produce a unique composition of emissions when ignited (Blake
et al., 2009). This combustion results in the intermittent release
of dense plumes containing volatile organic compounds, PM2.5
(particulate matter with a diameter of <2.5 pm), and PM10 (par-
ticulate matter with a diameter of <10 pm), which are considered
particularly threatening to the cardiorespiratory health of exposed
communities (Geron and Hays, 2013; Blake et al., 2009; Hinwood
and Rodriguez, 2005; Joseph et al., 2003).

The health effects of wildfire emissions have been assessed us-
ing a number of different approaches and vary based on geographic
location, ignition source, fuel, atmospheric conditions, topography,
duration, season, and other physical variations of wildfires (Tse
et al., 2015; Youssouf et al., 2014; Kochi et al., 2010, 2016;
Rappold et al.,, 2011; Vora et al., 2010). Johnston et al. (2012)
emphasize the substantial contribution of landscape fires to
harmful global emissions and provide annual mortality estimates
resulting from such fires. These estimates are substantial (200k-
600k deaths per year globally); however, Kochi et al. (2016) rec-
ommends that mortality should not be considered for individual
fire events that are: in the lower quartiles of susceptible area, short
lived, or infrequent. Wildfires in the GDS are estimated to be both
infrequent and on the lower quartiles of susceptible area (<4k
hectares) (MTBS, 2014). Following this recommendation we
examined effects related to morbidity and assume mortality is not a
primary outcome of GDS wildfires. This assumption is supported by
the fact that there was no recorded loss of life directly or indirectly
attributable to either the 2008 or 2011 GDS wildfires (communi-
cation with GDS staff). We focused on morbidity symptoms expe-
rienced in nearby populations resulting from brief exposure to
dense wildfire smoke plumes (EPA, 1999; 2004).

Rappold et al. (2011) examined the effect of peat fires on
emergency department (ED) visitation rates in 42 North Carolina
counties during a 2008 catastrophic fire in the Pocosin Lakes Na-
tional Wildlife Refuge, a peatland with similar vegetation and hy-
drologic characteristics as GDS. Rappold et al. (2011) provided the
estimates of cumulative Relative Risk (cRR) used in our analysis.
cRR measures the ratio of the probability of a given occurrence over
a discreet timeframe; for our purposes, the occurrence ratio is
defined as those at risk of an ED visit in the absence of harmful
smoke exposure, to observed visits during exposure. Johnston et al.

(2014) employed a similar approach over an eleven-year time
period in Sydney, Australia. Using ground-based PM sensors,
Johnston et al. (2014) examined the relationship between harmful
PM levels due to confirmed fire events and ED visitation. Although
the fuels in the Australian study were very different to those of the
present study (litter and grass fuels versus organic peat soils),
Johnston et al. (2014) found a significant relationship (measured in
cRR) between ED visitation and smoke exposure days. Due to the
likeness of fuel source in Rappold et al. (2011) to that of the SOF and
the GDS in general, we robustly applied and extended their
methods for this analysis.

The valuation literature on the economic costs of wildfire is
largely focused on geographic areas dissimilar to the GDS (Moeltner
et al, 2013; Richardson et al., 2012). Richardson et al. (2012)
employed a defensive behavior valuation method to derive will-
ingness to pay (WTP) to avoid smoke exposure during a 2010 Cal-
ifornia wildfire. When compared to values derived using COI
methods, WTP is considered a more appropriate measure of the
true value of fire mitigation services (EPA, 2007; Hanemann and
Kanninen, 2001; Loomis et al.,, 1991). The authors estimated a
WTP/COI ratio of 9:1, suggesting the true value of fire mitigation
could potentially be as much as, or more than, nine times higher
than COI estimates. Moeltner et al. (2013) conducted an inter-
temporal analysis of wildfires in the western United States and
found the marginal effects of wildfires on public health to have a
lower-bound of $150-$200 per 40 ha of wildfire, aggregated to
approximately $2.2 million over the course of a fire season in their
study area.

Our analysis adds to the literature by exploring the economic
cost of wildfire through localized outcomes on public health,
attributable to wildfire smoke emissions from a nearby forested
peat wetland. We extend the wildfire literature by providing
unique estimates of the ecosystem services benefits resulting from
a change in refuge management regimes. Using spatially targeted
COI estimates we provide a local measure of the potential benefits
to public health as a result of improved hydrology and wetland
restoration. This study also contributes to a growing body of liter-
ature exploring the versatility and applicability of remote sensing
methods by using high-frequency satellite data as a foundation for
our analysis. Lastly, we propose that the methods described may
provide a concise and systematic process for researchers and land
managers to employ when more in-depth studies are not feasible.
Our estimates of the benefits of avoided fire on an annual basis rely
heavily on fire probabilities and the expected reduction in these
probabilities as a result of management actions, which are highly
uncertain. To this end, we offer a hypothetical damages avoided
estimate based on the reduction of catastrophic fires by 50% in
either severity or duration. The ecosystem services benefit esti-
mates are unique to this refuge, and researchers should consider
the similarity of their study area to ours before performing any
direct transfer of these estimates.

2. Study area

The GDS encompasses approximately 54,000 ha of protected
habitat located in southeastern Virginia and northeastern North
Carolina. Similar to other southern swamps in the eastern United
States, the wetland provides a unique habitat for a variety of flora
and fauna, and numerous opportunities for recreational activities.
However, the GDS is highly disturbed due to centuries of drainage,
logging, and human encroachment, which together have led to
drier and less-desirable conditions within the refuge (Reddy et al.,
2015). This has shifted fire dynamics within the GDS by exposing
organic peat soils to a higher probability of catastrophic wildfire
and increasing the frequency and intensity of large fire events
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(Frost, 1987). In an effort to restore the conditions of underlying
hydrology and vegetation, GDS refuge management have installed
water control structures. We don't estimate the costs of restoration
or opportunity costs of the land which is protected within the
refuge; the objective of the current analysis is to estimate a subset
of the benefits of a restored system. The refuge sits 40 km inland
from the Atlantic coastline, and experiences a west to east atmo-
spheric current. This current typically carries smoke plumes origi-
nating from the GDS out to sea; however, eight Virginia counties
(Chesapeake, Franklin, Isle of Wight, Norfolk City, Portsmouth City,
Southampton, Suffolk, and Virginia Beach) surrounding the refuge
are prone to smoke exposure from these plumes before they are
eventually carried off the coast. These counties lie within the
Tidewater region of Virginia (Fig. 1). Five counties in northern North
Carolina are suspected to have been exposed to plumes from the
SOF as well - Gates, Camden, Currituck, Pasquotank, and Perqui-
mans. However, due to a wildfire in the Pocosin Lakes National
Wildlife Refuge during our study period, it is difficult to determine
the origin of the smoke over these counties. In addition, emergency
department data for Franklin County in Virginia was unavailable. To
avoid over-estimation of the fire mitigation service and due to
limitations in data availability, we limit our study to the seven
Tidewater counties.

3. Materials and methods

Our methodology to estimate the benefits of a fire mitigation
ecosystem service in GDS was performed in four distinct stages: 1)
determined geographic area and populations vulnerable to dense
smoke plumes originating within the refuge; 2) applied measures
of cRR to health outcomes attributable to wildfire smoke exposure;
3) estimated the economic cost of a wetland wildfire using localized
values for COI and lost wages; and 4) applied site specific fire
probability and forecasted reductions through proposed manage-
ment actions. The resulting avoided cost estimate is what we
consider to be the public health benefit of a fire mitigation
ecosystem service.

3.1. Area of impact

We determined geographic area and temporal exposure to SOF
smoke plumes using a combination of remote sensing techniques,
ground-level sensors, and air-quality indices. We examined daily
geostationary aerosol smoke product (GASP) satellite readings ac-
quired from the National Environmental Satellite Data and Infor-
mation Service for the Tidewater region. These data provide high-
resolution measures of aerosol optical depth (AOD) at 4 km
square grids collected in 30-min intervals during daytime hours.
AOD is a unitless measure ranging from O to 2; higher values
indicate dense atmospheric conditions and are considered a good
predictor of harmful PM2.5 concentrations (Al-Saadi et al., 2005;
EPA, 2009). We generated daily 24-h averages of AOD measure-
ments for the seven Tidewater counties.

In addition to smoke plumes, AOD can also be influenced by
ambient air pollution. To help distinguish between pollution and
wildfire contributions to AOD measurements, we examined his-
torical levels within the region during both fire and non-fire years.
In 2008 during those months that there were no fires (January to
June; November and December), the daily AOD average for the
Tidewater region was 0.33 with a standard deviation of 0.22.
Similarly, during non-fire years (2005-07; 2009-10) AOD averages
in the study area were 0.34 with a standard deviation of 0.26
(Table 1). The dense nature of the SOF plumes can bring these levels
up to 2.0. As such, we determined a threshold for harmful smoke
exposure to be in excess of 1.25 (consistent with assumptions in

Rappold et al., 2011), and require at least 10% of a county be
exposed above this level to be considered. Our estimates rely on
these thresholds to be conservative and consistent with the liter-
ature to avoid overestimation in the results. During the 121-day
period we found that each of the seven Tidewater counties exam-
ined was exposed between one and six days, with a total of 14 days
when at least one county was exposed to harmful smoke.

Satellite-sourced AOD may not always be an appropriate mea-
sure of ground level conditions. However, peat wildfires typically
result in low-lying smoke plumes, supporting the use of GASP
readings when determining human exposure to wildfire smoke
plumes (Rappold et al., 2011). An alternative to GASP AOD is to
utilize ground level particulate matter measurements from devices
in the region. A benefit to ground level monitors is that their
elevation is closely representative of human exposure to PM2.5
(Boyouk et al., 2010). However, there are several limitations with
these monitors including reduced ability to accurately determine
readings across a given region due to their fixed location and the
frequency of readings (Youssouf et al., 2014). For example, some
monitors produce values once per day while others are as infre-
quent as once every four days. Twenty-four hour averages of these
readings are a good estimate of high exposure levels at a given
location, but weather patterns may prevent the monitors from
detecting high levels of PM2.5 due to wildfire smoke plumes
(Youssouf et al, 2014). The National Aeronautics and Space
Administration Langley Research Center is the only ground monitor
in the seven-county study area providing daily PM2.5 levels. 7 of
the 14 exposed days determined using GASP AOD were also days
that the ground monitor provided readings. We used these data
and the resulting Air Quality Index (AQI) measures of the region to
compare estimates of heavy exposure determined by the GASP data
(see Table 1).

While the 14 GASP AOD high-exposure days also received high
PM2.5 estimates from the ground monitor when available, the
standard errors are much larger for the Langley Research Center
ground monitor and AQI. When smoke plumes reach the monitor,
this provides a good measure of local air quality; however, much of
the Tidewater region is not captured by these readings and results
in a much larger estimation error for the region. GASP high expo-
sure days have an average AOD of 1.45 and a notably tighter devi-
ation from the mean as they provide a much more spatially and
temporally targeted reading derived through the satellite mea-
surements. During the same months as the SOF in the five non-fire
years, the 24-h AQI average for this region was 46.98. Daily levels of
AQI above 63 are considered moderate to unhealthy, and corre-
spond with measured PM2.5 conditions in excess of 35 pg/cm.! The
AQI and PM2.5 levels included in Table 1 are produced using the
U.S. EPA AirData archives.’

3.2. Health outcomes

We examined the incidence of five cardiorespiratory related
illnesses during the SOF. Periods of brief yet heavy exposure to
wildfire smoke have been widely recognized to have negative im-
pacts on five specific diagnoses: asthma, chronic obstructive pul-
monary disease (COPD), pneumonia/acute bronchitis, congestive
heart failure (CHF), and miscellaneous cardiopulmonary symptoms
(EPA, 2004; 1999). These outcomes can by identified by using the
International Classification of Diseases, Ninth Division, Clinical

1 Additional information regarding the AQI can be accessed through the U.S. EPA
and/or AirNow.gov.

2 EPA  AirData
download-daily-data.

archives: https://www.epa.gov/outdoor-air-quality-data/


http://AirNow.gov
https://www.epa.gov/outdoor-air-quality-data/download-daily-data
https://www.epa.gov/outdoor-air-quality-data/download-daily-data

77"17;19‘W 76°16'18"W
& 3 \
NY . .0 3 Explanation
e N T
| > Days of Exposure
2 K B
- |OH i Ny l: 2
37°75"N4—| B 37°T5"N
wy —
VA | B
RTSMO I -
NC )\
VIRGINIA
- SOUTHAMPTON
< SUFFOLK
e i ROTTR CAROLNA RONT CARRNA
FRANKLIN £
;‘ N L N
T  Great Dismal Swamp
NORTH CAROLINA oy
77°17"19"W 76°16'18"W
T7eAT9W

76°16'18"W

37°T5"N

VIRGINIA

INIA
AROLINA

-a

NORTH CAROLINA

Explanation

AOQOD June 21,2008

I 1257038695

7°1719'W

76°16'18"W

Fig. 1. Study Area. Top panel provides total number of days VA counties were exposed to heavy smoke plumes during the Great Dismal Swamp South One Fire (at least 10% of county

above daily Aerosol Optical Depth (AOD) average of >1.25). Bottom panel provides a snapshot of AOD readings for June 21, 2008 when Chesapeake and Virginia Beach were both
above the exposure threshold due to heavy smoke plumes from the SOF.



B. Parthum et al. / Journal of Environmental Management 203 (2017) 375—382 379

Table 1
Exposure metrics.
Timeframe AOD AQI LRC-PM2.5
Non-fire years Annual 0.34 41.79 10.90
(0.26) (18.58) (6.11)
SOF months 0.37 46.98 12.67
(0.24) (20.43) (7.16)
2008 Non-fire months 0.33 38.09 9.75
(0.22) (17.40) (5.53)
SOF months 0.39 56.76 17.51
(0.24) (34.81) (15.93)
Exposed days 1.45 112.42 46.83
(0.19) (59.92) (32.75)

Note: Mean values displayed with standard errors in parentheses. Non-fire months
refers to the months outside of the 121-day SOF. burn. Non-fire years include ‘05-‘07
and ‘09-'10. SOF months of non-fire years are provided for seasonal reference.
Exposed Days are those that have 24-h averages > the AOD threshold of 1.25.

AQI = Air Quality Index; LRC = Langley Research Center Monitor;
PM2.5 = particulate matter <2.5 pug. AOD = aerosol optical depth.

Modification (ICD-9-CM) system, which are used by emergency
departments (ED) to classify patient diagnoses for symptoms of
morbidity. Ten ICD-9-CM codes fall under the five symptoms
identified above, and are used in our analysis. In cooperation with
Virginia Health Information® we explored daily ED visits in each of
the seven Tidewater counties. Table 2 provides a summary of the
symptoms and corresponding ICD-9-CM codes.

Smoke exposure might not result in an immediate visit to the ED
(Pope et al., 2008; Braga et al., 2001); as such we considered a
window for ED visitation due to a single initial day of heavy smoke
exposure. Rappold et al. (2011) employed a distributed lag model
(Peng et al., 2009) to determine a 5-day lag period in which those
who have been exposed to heavy smoke plumes may experience
symptoms related to exposure. Following Rappold et al. (2011), we
defined the visitation window to be the initial day of exposure plus
a 5-day lag period. During the SOF there were 548 total ED visits for
the ten ICD-9-CM codes throughout the seven Tidewater counties.

Not all the ED visits during the visitation window are a result of
the wildfire. A background rate of ED visits for the same symptom
classifications would occur regardless of smoke exposure. Rappold
et al. (2011) produced estimates of cRR for ED visits associated with
brief but heavy exposure to wildfire smoke using a quasi-poisson
generalized linear model. Daily estimates of relative risk were
then used to determine a measure of cRR over the visitation win-
dow. In addition to a point estimate, they established statistically
significant bounds for each symptom. The point estimate and cor-
responding bounds provide the upper and lower bounds for our
valuation estimates. Rappold et al. (2011) explicitly states measures
of relative risk to be:

Exposed
Daily RR : exp <6ut> = ot Exposed (1)
Hije
Equation (1): # is determined through the quasi-poisson
regression described above; u denotes the observed/expected
number of visits conditional on exposure; i, j, t denote the
symptom i in county j on day t.

5
Cumulative RR : exp ( Z 6ijt> (2)

t=0

3 ED visits during the duration of the SOF burn were made available to the re-
searchers through Virginia Health Information for the current analysis and under
privacy agreements cannot be released.

Table 2

Disease classifications.
Symptoms ICD-9-CM
Asthma 493
C.0.P.D. 491,492
Pneumonia 466; 481-82; 485-86
CH.F. 428
Cardiopulmonary 786

ICD-9-CM = International Classification of Diseases, Ninth Division,
Clinical Modification system; COPD = chronic obstructive pulmonary
disease; CHF = congestive heart failure.

Equation (2): @ is determined through the distributed lag
model (Peng et al., 2009); t denotes the days of visitation fromt = 0
(day of exposure) to t =5 (lagged exposure days); symptom i in
county j. This is the coefficient we use in the following equation to
determine excess visits due to the SOF. By applying estimates of cRR
for each ICD-9-CM code to the observed visitation during the SOF,
we statistically identified the counterfactual - visits not due to the
wildfire. Explicitly stated:

Exposed
I‘:“xposed o Mye ( 3)

Excess Visits = y;
ijt
exp (32 oby)

3.3. Economic valuation

The final step in our analysis was to associate an economic cost
with each excess visit from equation (3). We used regional COI
values highlighted within the BenMAP model framework (EPA,
2007). BenMAP provides COI by zip code; however, while the es-
timates vary by diagnosis they remain consistent throughout the
Tidewater region. These data are available through www.epa.gov/
benmap. While the BenMAP COI estimates incorporate all direct
costs of hospitalization associated with each ED visit by ICD-9-CM
diagnoses, they should be considered a lower bound estimate as
they do not account for the disutility associated with symptoms or
lost leisure and do not reflect the expenses incurred to avoid
exposure. We used local estimates of symptom days for each hos-
pitalization diagnoses (EPA, 2007) in conjunction with median
daily income for each county to estimate opportunity costs of
illness. We assumed individuals to be out of work for the extent of
the symptom days. These symptom days do not include time lost
during the recovery after the hospital visit, lost productivity, or lost
recreation, which have all been shown to significantly increase
traditional COI estimates (Chestnut et al., 2006).

The likelihood of ED visits and their associated COI are known to
vary by age (EPA, 2007), so we considered COI and symptom-day
estimates of two age categories. For asthma, COPD, and pneu-
monia diagnoses, the first age category falls between 18 and 64, and
the second is above 64 years of age. For CHF, only groups above 65
years of age are considered, and for miscellaneous cardiopulmo-
nary all patients over 18 are a single COI group. These age categories
are determined within the BenMAP framework to have different
costs and symptom days associated with each diagnoses. We used
wages as a proxy to determine the value of time lost during the ED
visit. As recommended by the EPA (2007), daily per-capita median
income is applied to the number of symptom days associated with
each diagnosis. This data is derived from the Bureau of Labor Sta-
tistics® for each of the seven Tidewater counties. While any group

4 Bureau of Labor Statistics provides wage data by county: https://www.bls.gov/
data/#wages.
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Table 3
Tidewater ED visits during the SOF.

Table 4
Endpoint Valuations for one Wildfire in the GDS.

Diagnoses cRR Total Visits Excess Visits South One  Annualized Costs Annualized Benefits
(95% C.I) (Age) (95% C.I) Fire (Current Hydrology) (Improved Hydrology)
Asthma 1.65 53 20 Cost of Illness $3,575,000 $ 71,511 $35,756
(1.25-2.17) (18 <) (11-38) Opportunity Cost $ 116,605 $2332 $ 1166
C.O.P.D. 1.73 83 35 Total $3,692,000 $ 73,843 $36,922
(1.06—2.83) (18 <) (5—53) Per Hectare $ 306 $8 $3.75
Pneumonia 1.59 112 41 - - - .
(1.07-2.17) (18 <) (7—60) Note: MTBS estimates the current annual probability of a catastrophic fire within the
CHF 1 57 : 119* 32 GDS is 2%. With improved hydrology this estimate may fall to 1%. Per hectare es-
o (]' 01-1.85) (65<) (1-54) timates are specific for peat wetland environments containing dense organic soils
Cardiopulmona 1 é3 : 1817 33 and medium-dense above ground biomass with nearby populations. All values are
P v (1' 06-1.43) (18 <) (10-54) reported in 2015 U.S. Dollars.

Note: Total Visits are observed over the duration of the SOF for the 7 counties
exposed to heavy plumes from the burn. Excess Visits are determined using equa-
tion (3). The age of patients whose visits were considered is consistent with Rappold
et al. (2011). Final valuation uses these EV and COI varies by age group within
BenMAP framework: www.epa.gov/benmap.

categorized above 64 years of age is assumed to be out of the work
force, wages are used as a proxy for opportunity costs during an ED
visit for groups above this age threshold. We aggregated the direct
costs of hospitalization (COI) with the opportunity costs (lost
wages: LW). The total benefit of avoiding these costs for one cata-
strophic wildfire in the GDS is calculated using equation (4), an
aggregate of values across all seven counties:

7
Cost of One Fire = _ [EVy*(COl; + LWy)] (4)
=

4. Results

Our analysis indicates that a single catastrophic wildfire event in
the GDS results in an estimated 161 excess ED visits throughout the
seven Tidewater counties. For each symptom, Table 3 provides a
summary of measures of cRR, total ED visitation, and ED visitation
attributable to the wildfire. The majority of symptoms that resulted
in excess ED visits were for morbidity diagnoses surrounding
pneumonia, totaling 41. An estimated 35 visits were related to
COPD, in addition to considerable ED visits for asthma, C.H.F,, and
other cardiopulmonary symptoms.

The economic cost associated with these health effects is an
estimated $3.69 million. The upper and lower bounds surrounding
our estimate range from $696,475 to $5.73 million, and are a direct
result of the 95% confidence interval of the cRR estimates.’ Table 4
summarizes the direct COI, opportunity costs, and total costs
associated with the health outcomes attributable to the SOF. These
are conservative estimates and only include the cost of hospitali-
zation and lost wages during the visit. It is important to note that
our analysis does not attempt to quantify the total economic or
public health costs associated with a wildfire in the GDS. It is likely
that additional, or less-severe, symptoms were experienced by
people within the exposure area who did not seek medical atten-
tion from the emergency departments examined within our study.
The expenses and/or disutility that these people incurred are not
accounted for in our estimates. Additionally, this analysis does not
include the real costs associated with fire suppression, the social
losses of carbon dioxide emissions from wildfire, the impacts to

5 These confidence intervals are listed in Table 3 under the point estimate for
each estimate of cRR. To create the upper and lower bounds in our valuation, these
values were used in equation (3).

wildlife, or the lost opportunities associated with recreation and
tourism during a fire event. Our values should therefore be
considered a conservative estimate of total losses to social welfare
from one wildfire.

When considering fire mitigation as an ecosystem service, it is
useful to assess the annual cost associated with a wildfire. Under
current (disturbed) conditions, the Monitoring Trends in Burn
Severity estimates that the GDS is expected to experience a cata-
strophic wildfire like the SOF twice every 100 years - a 2% annual
probability.® In terms of the health effects that we considered, this
translates to an annual risk of $73,843 in total costs (Table 4). A peat
wetland that was functionally restored would likely experience
fewer and/or less severe catastrophic fires. GDS land managers
estimate that implementation of proposed management actions
such as completing the system of water control structures and
restoring soils could reduce frequency or duration of expected
annual fire incidence by as much as an annual probability decrease
from 2% to 1%, and potentially reduce the duration of catastrophic
wildfires by 50%. A reduction of this magnitude would be associ-
ated with a $36,922 savings in expected annual costs to public
health.” This ecosystem service value, along with other costs
associated with wildfires, could be considered in cost-benefit an-
alyses of hydrologic restoration.

Evaluation of the costs of wildfires on a per hectare basis is
another way we considered how the magnitude of such a fire alters
economic losses. To estimate values by total area burned, we
examined the size and scope of the SOF. The SOF burned 1976
surface hectares. On a per hectare basis, we estimated the health
costs associated with the SOF to be $306.

5. Discussion

The dangers of public exposure to wildfire smoke, such as the
plumes generated during the SOF, can be costly. This analysis in-
dicates that a single catastrophic fire within GDS has potential costs
to public health ranging from $696,475 to $5.723 million. In terms
of ecosystem services, the functionality of the ecosystem is of in-
terest when studying a fire mitigation service. For every cata-
strophic fire event that is avoided or for every fire that has a
shortened duration, the value is gained by society. Under current
conditions, fire events of this magnitude recur twice every 100

5 Monitoring Trends in Burn Severity (MTBS) provides 30 years of historical data

to determine fire probabilities for the GDS. Recent scenarios suggest annual prob-
abilities could in fact be larger, especially when coupled with climate change
projections.

7 Peat wetland hydrologic restoration and water control structures are expected
to contribute to the reduced magnitude of impacts (especially duration) of wildfires
and potentially reduced incidence; however, the precise effects are not fully un-
derstood. Therefore, we use 50% reductions in duration and/or incidence as a hy-
pothetical to illustrate the potential value of avoided health effects.
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years, or an annual 2% probability (MTBS, 2014). On an annual basis,
we estimate the public health costs attributable to wildfire in the
GDS to be between $13,930 to $114,446. If management actions
could reduce the recurrence of catastrophic fire to one event every
100 years, or if the severity/duration of each fire were decreased by
50%, the annualized savings would be between $6965 to $57,233. It
is important to consider the true underlying costs of wildfires by
exploring the use of ratios such as those developed in Richardson
et al. (2012), EPA (2007), and Dickie and Messman (2004). These
ratios are indicative of how high the true value of avoided wildfires
could potentially be. If we were to adopt the WTP/COI ratio
developed by Richardson et al. (2012) of 9:1, our results translate to
a WTP on the order of $6.27 million to $51.51 million to avoid a
single catastrophic wildfire event or $62,700 to $515,100 annually.

The values estimated by this analysis are a conservative, partial
estimate. The true costs remain unknown, and the intent of this
study is to further refine estimates of just one of the many costs the
public experiences during a wildfire event. Valuation of this
ecosystem service does not account for avoidance behavior for
those at risk of smoke exposure, changes to economic activity
resulting from wildfires, the costs to suppress or extinguish the fire,
the value of carbon emissions (lost carbon stock), or impacts to
wildlife and biodiversity on the refuge as a result of the event. We
provide a conservative value estimate for the public health
parameter intended to provide support to management decisions
within the GDS. A shortcoming of this study, and similar studies, is
the limited size and scope of historical wildfires within the GDS, in
addition to the limited access to emergency department visitation
data. We propose the true underlying relationship between wildfire
size and emergency department visitation to be non-linear and
highly dependent on proximity and density of communities to the
fuel source. Factors other than wetland hydrology that likely
contribute to this relationship include public air quality notices and
the greater atmospheric patterns which distribute smoke plumes
upon various populations. This is an area for future research and we
propose this analysis will partner well with studies which examine
other factors contributing to the relationship between public health
and wildfire or wetland management. Public land managers
outside the GDS might find these estimates useful, especially for
peat wetland areas susceptible to wildfire, and for management
actions aimed at reducing the probability of wildfire for these areas.

6. Conclusions

Our analysis adds to the existing literature exploring the eco-
nomic cost of wildfire through outcomes on public health, attrib-
utable to localized wildfire smoke emissions from a nearby forested
peat wetland. We extend these costs into management space by
providing estimates of the benefits of land management aimed at
reducing the duration or severity of wildfire. The methods
described above provide a concise and systematic process for re-
searchers and land managers to examine the benefits of a fire
mitigation ecosystem service. For this study we were limited to
select days of emergency department data during a single historical
fire within the GDS. Clearly this is a shortcoming of this study;
however, our estimates and methods provide an important
contribution to this literature, and we encourage other researchers
to replicate these methods in similar wetland areas to help uncover
the true underlying relationship between wetland management
and public health risks of peat wildfires. Emergency department
data such as these are often difficult or costly to acquire. For this
reason we propose that a statistically sound functional transfer of
the measures of cumulative relative risk from Rappold et al. (2011)
provides a feasible approach when larger, more in-depth studies
are not practical. We also contribute to a growing body of literature

exploring the versatility and applicability of remote sensing
methods by using high-frequency satellite data as a foundation for
our analysis. By using localized COI we propose that the end point
estimates derived within our analysis are an accurate value for this
region, and any similar research should explore the COI estimates
corresponding to the same region as the study.

The GDS provides many ecosystem services and the current
efforts to restore the wetland's hydrology could potentially increase
the flow of these services. A reduction in the occurrence or severity
of catastrophic wildfires in GDS would have multiple benefits
including the potential avoidance of negative public health effects.
Valuation of the fire mitigation ecosystem service as a part of a
portfolio of services provides important information to refuge
management about the total potential benefits associated with
wetland restoration. Climate change and continued drying condi-
tions could potentially increase the probability of catastrophic fire,
and considering the full range of these valuations will be an
important step in protecting the overall welfare of the public.
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