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Abstract5

Mountain snowpack is a major driver of participation in outdoor winter recreation and6

is greatly threatened by climate change. To quantify the consumer welfare underlying7

this climate amenity, I estimate structural parameters in the utility functions of alpine8

skiers and recover the marginal willingness to pay for mountain snowpack in each U.S.9

resort market. Regional variation in the MWTP for snowpack ranges from $1.38/inch10

in the Midwest to $4.24/inch in the Northeast. Using a binned snowpack model to11

estimate consumer surplus, I find it is increasing nonlinearly from $18 on a day with12

between 10-20 inches to $144 for 80-90 inches. Daily market shares are used to recover13

substitution patterns, providing further insight into how skiers move across markets14

based on changes in mountain snowpack. I find that substitution is larger in the15

Mountain-West states, suggesting that these skiers are quite responsive to changes in16

snowpack within their own region. The Central-East states do experience substitution,17

but relatively smaller in magnitude than their western counterparts.18
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1 Introduction22

Mountain snowpack—the amount of packed, dense snow on the ground—is a major driver of23

participation in outdoor winter recreation (Hamilton et al., 2007; Shih et al., 2009; Falk, 2010;24

Damm et al., 2017; Parthum and Christensen, 2021). Its composition and depth can change25

daily from blowing wind, melting, and from deposits of new snowfall (i.e. snowfall within the26

most recent 24 hour period). Snowpack is primarily provided by the natural environment as27

a nonmarket, environmental amenity.1 In the United States (US), snowpack at mountain28

resorts accommodates more than 50 million skier visits each year and contributes to a $7029

billion snow sports industry (Vanat, 2014; NSAA, 2018). Snowpack is also an environmental30

amenity that is particularly threatened by climate change (Mendelsohn and Markowski, 1999;31

Dawson and Scott, 2013; Rosenberger et al., 2017; Wobus et al., 2017). But what is the32

recreation value of mountain snowpack?33

One of the challenges in estimating demand for environmental amenities such as34

snowpack is that the markets for the amenity of interest rarely exist. Instead, researchers35

interested in the value of mountain snowpack must rely upon nonmarket valuation methods36

such as using surveys to construct markets (Rutty et al., 2015a; Steiger et al., 2020) or by37

linking observed (revealed) consumer behavior to fluctuations in the environmental amenity38

(Morey, 1985; Englin and Moeltner, 2004). Both approaches have their relative strengths and39

weaknesses (Alberini, 2019). One advantage of stated preference methods is their ability to40

1To supplement naturally occurring seasonal snowpack, many mountain resorts have invested in snow-making
equipment. However, snow-making is costly and limited in its capacity to cover large areas (Falk and Vanat,
2016; Scott et al., 2019; Steiger and Scott, 2020). It is also dependent on optimal weather conditions that
are suitable for freezing water (Wobus et al., 2017). In this paper, I do not distinguish between naturally
occurring snowpack and snow that was made using snow-making equipment.
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estimate values when there has been little observed variation in the level of the environmental41

amenity of interest. But they are often criticized for their hypothetical nature through which42

bias could be introduced in the estimates when people say they will behave one way and43

choose to behave another way when actually faced with the decision (Cummings et al., 1995;44

Champ and Bishop, 2006; Carson and Groves, 2007).45

Revealed preference methods, those using observed market behavior, do not face the46

concerns of hypothetical bias because consumer behavior is actually observed. However,47

revealed methods are not without their own unique challenges. Data on observed market48

behavior is typically hard to come by, and when such data do exist, they are notoriously49

plagued by endogeneity and unobserved characteristics or traits that influence demand.50

I address both of these challenges in this paper. I use a unique set of daily short-term51

property rentals that serve as a repeated cross-section of recreation decisions. I also address52

endogeneity concerns using a high-dimensional fixed effect model to control for unobservable53

characteristics that affect recreation decisions, coupled with a two-stage least squares (2SLS)54

approach to instrument for unobserved characteristics that are likely correlated with price.55

Previous attempts to quantify welfare in the alpine skiing market have been few. But56

those that do, typically provide estimates of average consumer surplus per trip.2 Estimates57

of the average surplus per trip have been derived using specific resorts (Morey, 1985), a small58

group of resorts (Adrangi, 1983; Englin and Moeltner, 2004), and nationally (Bergstrom and59

Cordell, 1991; Loomis and Crespi, 1999; Mendelsohn and Markowski, 1999; Bowker et al.,60

2009). These values range anywhere from $14 for a day of skiing (Morey, 1985), to $27761

2See Rosenberger et al. (2017) for a survey of this literature.
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(Bowker et al., 2009), with an average value of a trip at $77 for alpine skiers (Rosenberger62

et al., 2017). Each has noted that refinements should be made to understand how consumers63

benefit on the margin to environmental amenities. For example, Bowker et al. (2009) state64

that there are significant limitations of their approach including the ability to model “anything65

that would include using site characteristics to explain variation in visits” and the “exclusion66

of substitution behavior.”67

Per trip consumer surplus is helpful for quantifying value on the extensive margin68

(the number of trips taken) but does not separate welfare into its component parts based on69

the characteristics of each trip. For example, a skier might value a trip more if there is a70

deeper snowpack (fewer visible rocks, more ski-able terrain, etc.), but still decide to make71

the same number of trips. Parsing per trip consumer surplus to identify estimates of the72

marginal willingness to pay (MWTP) for trip characteristics allows for estimates of value on73

the intensive margin. In this paper, I exploit a repeated cross-section of daily visitation to74

resort markets in the US. I use a discrete choice framework (McFadden, 1973; Hanemann,75

1984) to provide estimates of the MWTP for mountain snowpack for all major markets in76

the continental US. These values can be used to provide guidance to policy makers who are77

interested in the recreation value of snowpack, but also by firms who are making investment78

decisions in snow-making equipment—particularly in the face of a changing climate (Scott79

et al., 2007; Dawson and Scott, 2013; Wobus et al., 2017; Wilson et al., 2018; Steiger et al.,80

2019).81

Site substitution is a well-known and important phenomenon to consider when modeling82

recreation behavior (Peterson et al., 1985; Phaneuf, 2002; DeValck and Rolfe, 2018; Dundas83
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and von Haefen, 2019). However, it has received little attention in the context of alpine84

skiing decisions. Substitution effects have been examined between a few resorts as a form85

of adaptation to climate change in Austria (Steiger and Scott, 2020), Ontario (Rutty et al.,86

2015a,b), and the Northeastern US (Dawson and Scott, 2013), but remains an area of87

necessary research (Unbehaun et al., 2008; Rosenberger et al., 2017). In this paper, I explore88

how skiers choose to substitute across resort markets in the continental US. For example, if89

Colorado receives a shock in snowpack levels, how do people in Vermont respond? I use a90

structural demand model at the market-level (Berry et al., 1995; Nevo, 2001) to recover a91

matrix of snowpack substitution parameters (elasticities) that estimate how people choose to92

move across resort markets in response to changes in mountain snowpack.93

I make two primary contributions in this paper: 1) I provide estimates of the MWTP94

for mountain snowpack at the national and regional levels; and 2) I construct a matrix of95

substitution elasticities between US resort markets. Both contributions invoke random utility96

maximization (RUM) (McFadden, 1974) to estimate structural parameters in the utility97

functions of alpine skiers. For the first contribution (1), I maintain trip-level micro data98

to estimate marginal utilities subsequent MWTP. I develop a new instrument to address99

price endogeneity concerns for use in a 2SLS instrumental variables approach. I discuss this100

model and its results first. For the second contribution (2), I aggregate the trip-level data101

to market-level and calculate daily market shares (Berry, 1994; Berry et al., 1995; Nevo,102

2001). This allows me to recover substitution patterns in the form of elasticities, providing103

insight into how skiers move across markets based on changes in mountain snowpack. Both104

contributions are important for understanding consumer welfare in the alpine skiing market105
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and the implications of a changing climate.106

2 Empirical Framework107

In the spirit of the recreation demand literature (Hanemann, 1984; Bockstael et al., 1989), I108

estimate a discrete choice, travel cost model using daily micro data on visitation to ski resort109

markets over three complete ski seasons.3 The data—described in detail in section 3—are110

from the short-term property rental market. The geographical coverage includes 13 US states111

and 137 individual resorts. Each observation is assumed to be a discrete decision made by a112

skier. The term ‘skier’ can be used to describe a variety of winter recreationists, but in this113

paper I use the term to describe the decision maker.114

I model the discrete choice to either make the trip or to opt-out. The decision to115

opt-out can include staying home (which I do not observe), but can also include any outside116

option that the skier faces such as making a trip to another resort (which I observe), or117

staying in accommodations outside the short-term property rental market (which I do not118

observe). Using this framework, I estimate: 1) average marginal utilities for all skiers, and 2)119

heterogeneity in the means of the marginal utilities by geographical regions (Mountain-West120

vs. Central-East, and by NSAA resort regions, Figure A1).121

The discrete choice is made as follows: a skier i makes the decision to make a trip122

to resort j each day t, or decides to opt-out. This means that the dependent variable in123

the model takes a value of 1 if a trip was made (i.e. a short term property was rented)124

and 0 otherwise. The choice is characterized in the RUM framework of McFadden (1974):125

3I discuss trip-level estimation first. Market-level is discussed in section 5.
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U i
jt = V i

jt + εijt, where V is the representative component of utility and ε is the unobserved126

individual-specific utility in the model, distributed extreme value. The utility received from127

choosing the outside option is normalized to be equal to 0. The probability that skier i128

chooses alternative j is:129

P i
jt = Prob(V i

jt + εijt > 0), (1)

resulting in the standard logit choice probabilities:130

P i
jt =

1

1 + exp(−V i
jt)
. (2)

The parameters recovered from a logit regression are the marginal utilities for each attribute131

in the model—the ratio of which can provide meaningful information about the marginal132

rate of substitution between two attributes. When one of the attributes is the price of the133

trip, the econometrician can estimate the MWTP for the non-monetary attributes by taking134

the ratio of their parameters (the numerator) and the parameter on price (the denominator).135

3 The Data136

Daily bookings in short term properties are acquired from a private firm who collect the137

universe of Airbnb, VRBO, and HomeAway listings across the US (AirDNA, 2017). Rental138

transaction data for each property include the reservation date, availability (available or139

not available to rent), the price paid, and property characteristics such as the number of140

bedrooms, bathrooms, and the approximate coordinates of the home. The dataset includes141

more than 1.4 million properties and 410 million bookings spanning the contiguous US.142
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I identify all properties located within 10km of a ski resort to construct an empirical143

sample of 33,636 unique properties and 6.6 million observed property-days. Owners of these144

properties have the option of “blocking” the property for their own use, or have it listed as145

“available.” When a property is rented, it is recorded as “reserved” and the date that the146

reservation was made is recorded.147

The environmental amenities, snowpack and snowfall, are acquired from a website148

(OnTheSnow.com, 2017) that provides daily reports for all 137 resorts in the sample. These149

amenities are as reported by the ski resort on each day and matches the information that a150

tourist see when making the decision to make a trip. I developed a web scraper to recover151

historical daily data from their website, as well as any resort characteristics and lift ticket152

prices available. 34 resorts fall within 20km of one or more other resorts (i.e. resorts that have153

overlapping 10km buffers). I classify these as unified markets and take the average levels of154

the environmental amenities observed at each resort (snowpack, snowfall, and temperature).155

Daily mean temperature is acquired from Oregon State’s PRISM Climate Group156

(PRISM, 2018), which provides a dedicated API that allows researchers to efficiently recover157

interpolated weather values in a raster format. From the raster files, I extract the daily158

mean temperature in each resort market. Summary statistics of all the variables are in the159

Appendix (Tables A3, A4, and A5).160
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4 The Model161

The utility U of person i from choosing alternative j on day t at resort r is:162

U i
jt = −λpricej + β′snowpackrt +X ′

rtφ+Z′
jγ + Ωt + θr + εjt. (3)

It is worth noting that each alternative j is nested within its respective resort r such that163

snowpack, the environmental amenity of interest, varies at the level of the resort. The cost164

attribute, price, includes the cost to travel to the resort and any expenses related to accessing165

the ski slope: 1) the per-bedroom price of the property; 2) the driving distance to the nearest166

metropolitan area (in miles) multiplied by $0.33; and 3) the price of a lift ticket at the167

nearby resort. The variable snowpack includes a linear and quadratic polynomial to allow for168

diminishing marginal utility of snowpack; β is a vector consisting of two parameters (β1, β2)169

summarizing the nonlinear relationship between snowpack and utility.4170

The vector X includes characteristics of the resort that also vary at the daily level: 1)171

six bins of new snowfall received at the resort within the most recent 24 hours; a linear and172

quadratic of 2) the total new snowfall within the past week; 3) mean temperature; 4) the173

total number of available properties on each day; and 5) average snowpack, weekly snowfall,174

and mean temperature at nearby substitute resorts (other resorts that are in the same state).175

Including the average characteristics of nearby resorts (excluding resort r) helps to control176

for the relative utility of the outside option (normalized to be equal to 0). The parameter177

vector φ summarizes the marginal utilities of the characteristics in X.178

4I also estimate a non-parametric binned regression model, discussed in section 4.3.
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The vector Z includes information about the alternative j such as number of bed-179

rooms, bathrooms, and other characteristics of the property that I observe but remain fixed180

throughout the panel—discussed in more detail below. The parameter vector γ summarizes181

the marginal utilities of the characteristics in Z. Lastly, the fixed effect Ωt includes an182

indicator for the day-of-sample to capture the mean utility for every day in the sample. This183

controls for differential utility due to holidays, weekends, or anything else that is unobservable184

and might increase or decrease utility on any given day. θr is a resort fixed effect to capture185

preferences for time-invariant and unobservable characteristics of resort r.186

I am interested in estimating the MWTP for mountain snowpack. When estimating187

equation 3, MWTP can be recovered by taking a simple ratio of the parameters (marginal188

utilities) on snowpack and price such that MWTP snow = (β1 + β2)λ. One issue with this189

specification is that price is likely correlated with other unobservable features of j that190

influence the decision to make a trip (i.e. correlated with the error term ε). If this is true,191

the estimate of λ will be biased towards 0, inflating subsequent estimates of MWTP (Lewbel192

et al., 2012).193

In the same way that I control for time-varying unobservables with Ωt, I want to194

control for unobservable factors that are specific to alternative j—particularly those that195

affect the observed price of a trip—to mitigate the bias associated with correlations between196

the variables in the model and the error term. I address this concern by introducing an197

alternative specific constant δj such that any unobservable and time-invariant characteristics198

of j are captured in this parameter. However, doing so subsumes λ, the marginal utility199

of price, and any other parameters associated with characteristics that only vary across200
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alternatives.201

The addition of δj to the model sets the stage for a two-step estimation to recover202

unbiased estimates of the marginal utilities of j that dictate the decision to make a trip or203

to opt-out (Murdock, 2006; Timmins and Murdock, 2007; Klaiber and von Haefen, 2019).204

More specifically, I define the alternative specific constant δj(pj,Zj, ξj) as the collection of205

attributes that are specific to alternative j. The price of the trip pj is the three-part price206

discussed above. The vector Z includes other observable characteristics of j.5207

The third parameter in δj(pj,Zj, ξj), captures the characteristics of j that are only

observable to the decision maker (i.e. unobservable to the econometrician) and influence the

decision to choose alternative j. This can be thought of as features or amenities contained

within the pictures of the property, the presence of a fireplace, a desirable view-shed, or even

its exact location—such as ski-in-ski-out accommodations or access to public transportation.

Plugging δj(pj,Zj, ξj) into equation 3, person i’s utility function becomes:

U i
jt = δj + β′snowpackrt +X ′

rtφ+ Ωt + θr + εjt (4)

where

δj = −λpricej +Z′
jγ + ξj. (5)

5The full set of characteristics includes: the number of bedrooms* and bathrooms*, maximum number of
guests*, the number of photographs in the listing*, the distance to the resort (in meters)*, the total number
of days the property was available in the sample*, the median home price in the census block*, whether or
not an owner is considered a “superhost”, an indicator for if the listing is an entire home or private room,
and resort (location) fixed effects. Asterisks (*) indicate that a linear and quadratic polynomial was included
to flexibly model the utility from these characteristics.
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I estimate equation 4 using a standard logit specification, recovering the β’s and the vector208

of parameters associated with the alternative specific constants δj.
6 The large size of δj209

(33,636×1, or one estimate for each property j in the sample) is important for identifying the210

parameters in equation 5. To allow for correlation across observations, I cluster standard211

errors at the level of the market (Wooldridge, 2006; Abadie et al., 2017).7 I estimate equation212

5 using 2SLS to recover λ and γ, also clustering standard errors at the level of the market.213

As mentioned, price is endogenous in the model described so far. I propose my instrument,214

along with a comparison to alternative instruments, in the following section.215

4.1 The Endogenous Price of a Trip216

The price characteristic in equation 5 is likely correlated with other unobservable features of j217

that influence the decision to make a trip. I address this problem by first including a property218

fixed effect (equation 4) that subsumes the endogenous price. In the second regression219

(equation 5), I use a 2SLS approach that is common in the industrial organization literature220

(Berry et al., 1995; Nevo, 2001; Bayer et al., 2007). Typical instruments either include average221

prices of the outside option (Price-IV) or the average of any observable product characteristic222

of the outside options (BLP-IV). The assumption with these instruments is that the price223

and characteristics of alternative k, where k 6= j, only affect utility of alternative j through224

prices, conditional on other observable characteristics of the market.225

6One might be concerned about the incidental parameters problem (IPP) when estimating a nonlinear model
with large unit and time fixed effects (Neyman and Scott, 1948; Fernández-Val and Weidner, 2016). Potential
bias, arising from IPP, is mitigated when estimating the model using Stammann (2017) and integration of
post-estimation outlined in Cruz-Gonzalez et al. (2017).

7I examine correlation structures at the property, market, and state levels. Those results and discussion can
be found in the appendix (Table A1). Significance is robust to alternative clustering—I choose market-level
for the primary analysis.
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A unique feature of my data is that I observe the property owner’s decision to block226

their property for their own private use. This is made according to their own personal227

schedule, uncorrelated with demand shocks associated with the skier’s decision to make a228

trip. The assumption here is that the owner has their own schedule and does not choose229

to block or unblock their listing according to daily shocks in demand. Any deviation from230

this assumption and the instrument will have a weak first-stage. I estimate this variable,231

Υj, for each property j as the ratio of blocked days to the total observed days (blocked +232

available) in the sample and introduce this as an additional instrument for the endogenous233

price (Schedule-IV). My first-stage equation is:234

pricej = Z′
kΠ1 + Π2Υj +Z′

jΓ + θr + υj. (6)

The vector Zk includes the typical BLP-IV instruments—average price and property charac-235

teristics of the outside options. Υj is the property owner’s share of blocked days (Schedule-IV).236

X includes all observable characteristics of property j and θr is a resort fixed effect. I examine237

robustness of results using 1) only the average price of the outside option (Price-IV), 2) the238

traditional BLP-IV instruments, and 3) the BLP-IV plus the Schedule-IV, as outlined in239

equation 6. Results of a Wald test estimate the strongest set of instruments is (3), the joint240

use of the BL-IV and Schedule-IV. Table 3 provides a complete comparison of the three241

approaches.242
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4.2 Heterogeneity in Marginal Utilities243

I have, so far, described a model that estimates the average marginal utilities for skiers across244

the US. Underlying a national market, regional differences emerge in both the preferences (ski245

culture) and the geographical characteristics (elevation, terrain, etc.) of recreation decisions246

and opportunities. That is to say, the marginal utility of snowpack in the western US (e.g.247

California, Nevada, Utah, Colorado, etc.) might differ from the preferences for snowpack in248

the eastern US (e.g. Pennsylvania, Vermont, New Hampshire, etc.).249

To allow for heterogeneity in the marginal utility of snowpack, I introduce two

alternative specifications. The first splits the US into two distinct regions: Mountain-

West and Central-East. The Mountain-West region includes the states of Montana, Idaho,

Wyoming, Colorado, Utah, and California. The Central-East region includes Michigan, New

York, Massachusetts, Connecticut, New Hampshire, Vermont, and Maine. The second type

of region classification is determined by the NSAA regions: Westcoast, Rocky Mountain,

Midwest, and Northeast (Figure A1). The marginal utilities of the other attributes in the

model (new snowfall, mean temperature, etc.) are preserved as national averages and assumed

constant across the sample. I also assume the diminishing marginal utility of snowpack

(snowpack2 in the model) does not vary across regions. Utility is represented in region m by:

U i
jt =δj +

∑
m

βmsnowpackrt[region = m]

+ β2snowpack
2
rt +X ′

rtφ+ Ωt + θr + εjt, (7)

where δj = −λpricej + Z′
jγ + ξj. The only difference between equations 4 and 7 is the250
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addition of the interaction between snowpack and region.251

4.3 A Binned Regression Model252

Up until now, the relationship between snowpack and utility has been assumed to be

diminishing quadratically in depth. To accommodate a more flexible functional form between

snowpack and utility, I estimate a model that groups snowpack into increments of 10 inch

bins, with anything above 100 inches grouped in the largest bin. This allows me to trace out

the nonlinear relationship between snowpack and marginal utilities in each snowpack bin b:

U i
jt = δj +

∑
b

βbsnowpackrt[bin = b]

+ β2snowpack
2
rt +X ′

rtφ+ Ωt + θr + εjt, (8)

where δj = −λpricej +Z′
jγ + ξj . Similar to the regional specification in equation 7, the only

difference here is replacing continuous specification of snowpack with the binned snowpack.

As a final step, I introduce regional variation in the binned model by including an interaction

between the region and the snowpack bin:

U i
jt = δj +

∑
m

∑
b

βbmsnowpackrt[region = m][bin = b]

+ β2snowpack
2
rt +X ′

rtφ+ Ωt + θr + εjt, (9)

where δj = −λpricej +Z′
jγ + ξj . No changes are made in the 2SLS specification that is used253

to estimate the parameters of δj(pj,Zj, ξj) (equation 5) when exploring heterogeneity in the254
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marginal utility of snowpack.255

4.4 Results of Trip-level Estimation256

I find that skiers have large and statistically significant preferences for deeper snowpack (Table257

1).8 I also find that utility is, in fact, nonlinear and diminishing in the level of snowpack.258

When I introduce regional variation in the utility function, the marginal utility of snowpack259

is greater in the Central-East than the Mountain-West region. Parsing utility into NSAA260

regions, I find that the marginal utility of snowpack is largest in the Northeast, followed by261

the Rocky Mountain, Westcoast, and Midwest regions (respectively).262

The 2SLS estimates of the marginal utility of price are negative (as expected) and263

consistent across national and regional specifications (Table 1). I compare the strengths of264

the Price-IV, BLP-IV, and Schedule-IV instruments and find that the full set of instruments265

(BLP-IV + Schedule-IV) are the strongest predictors of price based on the results of the Wald266

F-statistic (Table 3). The näıve OLS estimate of λ is half the magnitude when compared to267

the 2SLS estimate using the full set of instruments—supporting the hypothesized attenuation268

bias in the coefficient on price.269

But what is the MWTP for mountain snowpack? I estimate empirical distributions270

of MWTP using 5,000 bootstrapped replications of the ratio: β/λ (Krinsky and Robb,271

1986). The mean MWTP for one inch of snowpack in the US is $2.40 and diminishing272

at approximately $0.01 for each additional inch (Table 2). I do find substantial regional273

variation, ranging from $1.38 in the Midwest to $4.24 in the Northeast. As mentioned earlier,274

8Results for all attributes in the model can be found in the Appendix (A2).
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the regional variation in the recreation value of snowpack is likely driven by differences in ski275

culture, snowpack composition, and geographical characteristics or the resorts (Vanat, 2014).276

I also estimate utility using the binned specification in equation 8. This allows me277

to estimate the WTP in each snowpack bin, in contrast to the previous results that derive278

the MWTP for each inch of snowpack in a parametric functional form. This is particularly279

useful for estimating welfare on a given day. For example, for each day a resort has 40”-50”280

of snowpack, I estimate the WTP for that snowpack at $110.23. Similarly, a day with 30”-40”281

of snowpack (one bin down), the WTP is $80.97, or approximately $30 less than the next282

higher bin (Figure 1). I also examine regional variation in the binned estimates and find283

that while the Central-East has higher mean WTP in most bins, the point estimates are not284

statistically different than the Mountain-West estimates for the same bin.285

5 Market Shares and Substitution286

To estimate geographical substitution across resort markets, I introduce variation in the287

outside option by asking the question: conditional on going, where do people choose to go288

and why? I do this in the framework of Berry (1994) and Berry et al. (1995) using a market289

share inversion. Each state-day pair is observed to have a share of the total visits in each290

season. A “market” in this context is a single day in the sample, and the “product” is a state.291

Market shares sum to 1 each ski season. This allows skiers to choose both when and where292

they go to ski, while also providing substantial variation in the product characteristics across293

markets.294
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Market shares s are the number of reserved beds q in state j on day t in season y295

divided by the total number of reserved beds Q in season y: sjty = qjty/Qy. The other296

variables in the model are the averages of the observed characteristics in each state-day pair297

in the sample: price, snowpack, weekly snowfall, and mean temperature.298

Average snowpack varies substantially across resort markets. I account for this299

difference in levels by using the natural logarithm of snowpack. This normalizes the level of300

snowpack and allows for a more intuitive interpretation of the derived substitution parameters.301

I estimate a random parameter model with unobserved heterogeneity in λ and β such that they302

are both indexed by i. The utility of skier i from choosing state j on day t is: U i
jt = ωjt + εijt.303

The term ε is, again, unobserved individual-specific utility of alternative j on day t, and the304

mean utility ωjt is:305

ωjt = −λipricejt + βilog(snowpack)jt +X ′
jtφ+ Ψj + Ωy + θh + ξijt. (10)

The parameter φ includes both the linear and quadratic of weekly snowfall and mean306

temperatures. Ψj, Ωy, and θh are fixed effects that capture baseline utility in each state,307

each season, and from making a trip during a holiday week. ξ, as before, captures the308

utility from the characteristics of j that are only observed by the skier (unobserved by the309

econometrician).310
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5.1 Results of Market Share Inversion311

Estimation is carried out numerically using the contraction mapping algorithm of Berry et al.312

(1995) to predict the market shares s in state j on day t such that:313

sjt =
exp(ωjt)

1 +
∑

j exp(ωjt)
. (11)

I use the average characteristics of the outside options k on day t to instrument for price314

(BLP-IV). The marginal utilities from estimating the regression are summarized in Table 4.315

As expected, I find that skiers have a positive and significant marginal utility of snowpack316

and a negative and significant marginal utility of price. Price has a statistically significant317

standard deviation; however, I find no unobserved heterogeneity in the marginal utility of318

snowpack (i.e. the standard deviation of log(snowpack) is not statistically different than 0).319

One could also estimate MWTP from these parameters; however, the trip-level approach320

described in section 2 is better suited to do so. The market-level approach, described here,321

is particularly useful for estimating substitution across resort markets, something that the322

trip-level approach is unable to estimate.323

To recover the elasticity of substitution η between alternatives j and k, I take the324

partial derivative of sjt with respect to snowpack (denoted by x) such that:325

ηjkt =
∂sjt
∂xk

xk
sj
. (12)

I average the resulting η’s over markets, dropping the subscript t, to recover a matrix of326
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own and cross-snowpack elasticities. It is reasonable to assume that skiers are more likely327

to substitute within a particular NSAA region (e.g. skiers in Vermont are more likely to328

respond to changes in snowpack in New Hampshire than changes to snowpack in California). I329

accommodate this assumption by specifying a group structure on ε that nests the correlation330

(denoted by σ) within each state’s NSAA region m. In doing so, the elasticities are:331

ηjk =



βxxk
1− σm

(1− (1− σm)sk − σmsk|m) if j = k; j, k ∈ m

βxxk
1− σm

((1− σm)sk + σmsk|m if j 6= k; j, k ∈ m

βxxksk if j 6= k; j ∈ m; k /∈ m

(13)

With this specification, as the correlation σm → 0, the cross-snowpack elasticity between j332

and k when they are the same nest, approaches the elasticity between j and k when they are333

not in the same nest. That is to say, that the cross-snowpack elasticity is larger in magnitude334

when state j is in the same NSAA region m as the substitute state k.335

I summarize the derived own and cross-snowpack elasticities in Figure 2. The columns336

of the matrix define the state where the change in snowpack occurs (i.e. the “dose” state)337

and the rows are the states that experience a change in predicted market shares (i.e. the338

“response” state). The diagonals of the matrix are the own-snowpack elasticities, and the339

off-diagonals are the cross-snowpack elasticities.340

Substitution is larger in the Mountain-West states: California, Utah, Idaho, Montana,341

Wyoming, and Colorado, suggesting that skiers in these states are quite responsive to changes342

in snowpack within their own region. The Central-East states do experience substitution, but343
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relatively smaller in magnitude than their western counterparts. One interesting finding is344

that Vermont is particularly affected when it experiences an increase in snowpack. Western345

states such as Utah, Wyoming, and Colorado, observe a 0.4 percentage point drop in market346

shares when Vermont receives a 1 percent increase in snowpack. This is likely due to Vermont347

skiers staying in their own state when conditions are good, but traveling to western states348

when conditions are bad.349

6 Discussion350

I estimate a flexible discrete choice model to derive marginal utilities of winter recreationists351

in the United States. I use a trip-level model of random utility to estimate the marginal352

willingness to pay for mountain snowpack. I find that skiers place a significant value on this353

particular environmental amenity, and that their values are not uniform across regions. This354

finding is important for welfare estimation in the sense that it allows measures of consumer355

surplus to vary on the intensive margin. More specifically, if the level of snowpack is expected356

to change under future climate, one could estimate the lost welfare from this change even357

if the number of trips remains the same. Alternatively, I provide estimates of willingness358

to pay for snowpack that are binned into increments of 10 inches. This provides a unique359

opportunity to estimate the consumer welfare for a day of skiing in each bin in the model.360

This is particularly useful for estimating differences in welfare when the number of trips a361

skier takes remains the same, but they experience more days in one bin than in another.362

The market-level model I use allows me to derive substitution parameters that map363

market shares to snowpack. I present these in the form of snowpack-elasticities (own and364
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cross). I find that market shares are, in fact, sensitive to the level of snowpack in local and365

nonlocal markets. While skiers are more likely to substitute across markets within their own366

region, I find that even markets that are geographically distant rely on the environmental367

amenities in the far away markets. Recognizing the degree to which markets are interconnected368

is important when considering the heterogeneous changes in snowpack accumulation predicted369

by climate change. Markets that are relatively better off (i.e. have smaller losses from base370

levels relative to other markets) should plan for substantial increases in market shares and371

visitation under future climate.372

The models I use in this paper build on a long-history of recreation demand literature,373

extending well-established practices and methods into a relatively less-researched market of374

outdoor winter recreation. The models are simple but sound, and could be improved upon375

as computational advances emerge and estimation algorithms become more efficient. The376

trip-level model could be expanded to accommodate random parameters that might allow for377

more refined estimates of marginal utilities. Additionally, the market-level model could be378

improved by incorporating other supply-side considerations that might affect the resulting379

market shares. Both models could be improved if one were to have a panel of consumers380

(compared to the repeated cross-section, or panel of properties, used in this paper), this381

would allow the incorporation of demographic characteristics that determine demand.382

The takeaway from this paper is that skiers do value and respond to marginal changes383

in mountain snowpack. This means that considering welfare on the intensive margin will384

be important for estimating damages under a changing climate. Estimates that use only385

measures of surplus on the extensive margin may over-predict changes in welfare by assuming386
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that people will not substitute across markets, and under-predict changes in welfare by failing387

to account for changes in value on the intensive margin.388
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Tables389

Table 1: Marginal Utilities from Trip Decisions

(1) (2) (3)
National West-East NSAA
Average Regions Regions

Snowpack 0.01242∗∗∗

(0.00392)

Snowpack × Mtn.-West 0.01159∗∗∗

(0.00070)
Snowpack × Central-East 0.02044∗∗∗

(0.00159)

Snowpack × West-coast 0.00914∗∗∗

(0.00076)
Snowpack × Rocky Mtn. 0.01146∗∗∗

(0.00070)
Snowpack × Midwest 0.00727∗

(0.00405)
Snowpack × Northeast 0.02235∗∗∗

(0.00164)

Snowpack2 -0.00004∗ -0.00004∗ -0.000009∗

(0.00002) (0.00002) (0.000004)
Price (2SLS) −0.00526∗∗∗ −0.00528∗∗∗ −0.00526∗∗∗

(0.00077) (0.00077) (0.00075)

Property j FE Yes Yes Yes
Day-of-sample FE Yes Yes Yes
Clustered. SE Market Market Market

Observations 6,610,513 6,610,513 6,610,513
McFadden ρ2 0.29 0.29 0.29
BIC 6,770,282.87 6,770,005.61 6,760,126.80
F-stat (Wald: IV) 204.02∗∗∗ 204.09∗∗∗ 203.4∗∗∗

Standard errors in parentheses ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Note: Column 1 summarizes the results from equation 4 and the 2SLS estimate of price from 5. The390

parameters represent the average marginal utilities associated with the attributes in the model. Standard391

errors are clustered at the market level. Results for the full set of covariates in equation 4 are in the appendix392

(Table A2). Full results for the 2SLS estimates for equation 5 are in table 3. Column 2 and 3 introduce393

heterogeneity in the marginal utility of snowpack and are recovered for each region using an interaction term394

between snowpack and the corresponding region of the resort (equation 7).395
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Table 2: Marginal Willingness to Pay for Snowpack

(1) (2) (3)
National West-East NSAA
Average Regions Regions

Snowpack $2.40
[2.38, 2.43]

Snowpack × Mtn.-West $2.22
[2.20, 2.24]

Snowpack × Central-East $3.93
[3.89, 3.98]

Snowpack × West-coast $1.79
[1.74, 1.82]

Snowpack × Rky. Mtn. $2.18
[2.17, 2.19]

Snowpack × Midwest $1.38
[1.33, 1.42]

Snowpack × Northeast $4.24
[4.22, 4.26]

Snowpack2 -$0.01 -$0.01 -$0.002
[-0.01, -0.01] [-0.01, -0.01] [-0.002, -0.002]

Krinsky-Robb 95% confidence intervals in brackets

Note: MWTP are calculated using the ratio of the marginal utilities in table 1 such that MWTP = β/λ.396

Empirical distributions of MWTP are calculated using the Krinsky-Robb approach (Krinsky and Robb, 1986).397

24



Table 3: 2SLS Results with Different Price Instruments

2SLS OLS

(1) (2) (3) (4)

BLP-IV and BLP-IV Price-IV Reduced
Schedule-IV Only Only Form

Price −0.00526∗∗∗ −0.00307∗∗∗ −0.00319∗∗∗ −0.00243∗∗∗

(0.00077) (0.00047) (0.00051) (0.00031)

Bedrooms −84.01∗∗∗ −52.72∗∗∗ −54.53∗∗∗ −43.71∗∗∗

(13.35) (7.37) (8.35) (5.94)
Bedrooms2 24.56∗∗∗ 15.21∗∗∗ 15.76∗∗∗ 12.52∗∗∗

(5.56) (3.69) (4.05) (3.11)
Bathrooms 21.50∗∗∗ 2.37 3.48 −3.14

(8.05) (4.86) (5.44) (3.46)
Bathrooms2 8.88∗∗ 6.38∗∗ 6.52∗∗ 5.66∗

(4.06) (3.10) (3.11) (2.97)
Maximum Guests 32.42∗∗∗ 19.97∗∗∗ 20.69∗∗∗ 16.39∗∗∗

(5.65) (4.33) (4.40) (4.02)
Maximum Guests2 −0.83 3.31 3.07 4.50∗

(3.38) (2.66) (2.64) (2.64)
Superhost 0.38∗∗∗ 0.43∗∗∗ 0.43∗∗∗ 0.44∗∗∗

(0.04) (0.05) (0.05) (0.05)
Number of Photos 18.78∗∗∗ 15.87∗∗∗ 16.04∗∗∗ 15.04∗∗∗

(5.16) (5.10) (5.08) (5.09)
Number of Photos2 −6.36∗ −4.64 −4.74 −4.14

(3.70) (3.22) (3.25) (3.20)
Distance (meters) −20.97∗∗∗ −14.85∗∗∗ −15.21∗∗∗ −13.09∗∗∗

(5.29) (3.83) (4.00) (3.58)
Distance2 (meters) 7.79 4.72 4.90 3.84

(4.98) (3.72) (3.80) (3.29)
Entire Home 0.99∗∗∗ 0.67∗∗∗ 0.69∗∗∗ 0.58∗∗∗

(0.17) (0.17) (0.16) (0.15)
Private Room 0.35∗∗ 0.22 0.23 0.18

(0.17) (0.16) (0.16) (0.16)
Total Days Available −65.27∗∗∗ −63.62∗∗∗ −63.71∗∗∗ −63.14∗∗∗

(6.23) (6.50) (6.48) (6.40)
Total Days Available2 42.42∗∗∗ 44.36∗∗∗ 44.24∗∗∗ 44.91∗∗∗

(4.01) (3.76) (3.78) (3.85)
Median Home −28.81∗∗∗ −15.27∗∗∗ −16.06∗∗∗ −11.38∗∗∗

(6.16) (4.13) (4.39) (3.51)
Median Home2 91.84∗∗∗ 91.75∗∗∗ 91.75∗∗∗ 91.72∗∗∗

(32.30) (30.27) (30.38) (29.77)
Market FE Yes Yes Yes Yes
Clustered. SE Market Market Market Market
Observations 33,636 33,636 33,636 33,636
Adjusted R2 0.188 0.226 0.225 0.228
Deg. of Fred. 33,524 33,524 33,524 33,524
F-stat (Wald: IV) 204.02∗∗∗ 76.55∗∗∗ 68.74∗∗∗ —

Standard errors in parentheses ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 4: Market-level Marginal Utilities

(1) (2)
Mean (λ, β) Std. Dev

Price -0.040∗∗∗ 0.023∗∗∗

(0.012) (0.005)
log(snowpack) 0.827∗∗∗ 0.016

(0.122) (0.622)

State FE Yes
Season FE Yes
Holiday FE Yes
Clustered. SE NSAA Region

Observations 5,937
F-stat (Wald: IV) 81.02∗∗∗

Standard errors in parentheses ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Note: Skiers have a positive and significant marginal utility of snowpack and a negative and significant398

marginal utility of price. Price has a statistically significant standard deviation; however, I find no unobserved399

heterogeneity in the marginal utility of snowpack (i.e. the standard deviation of log(snowpack) is not400

statistically different than 0).401
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Figures402

Figure 1: Willingness to Pay for Discrete Snowpack Bins

Note: Willingness to Pay is nonlinear in snowpack. Here, I present discrete bins of WTP for snowpack

nationally (Panel A) and for Mountain-West and Central-East Regions (Panel B). This is WTP for snowpack

only, not accounting for other characteristics of a trip that the skier might value separately. Regions are

largely similar in WTP. However, the Mountain-West region is steadily increasing and statistically distinct

in each incremental bin with deeper snowpack up to 70-80 inches and then flattens out—not statistically

different between each bin above the 70-80 inch bin.
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Figure 2: Own and Cross Snowpack Elasticities

Note: Substitution is larger in the Mountain-West states: California, Utah, Idaho, Montana, Wyoming, and403

Colorado, suggesting that skiers in these states are quite responsive to changes in snowpack within their own404

region. The Central-East states do experience substitution, but relatively smaller in magnitude than their405

western counterparts. One interesting finding is that Vermont is particularly affected when it experiences an406

increase in snowpack. Western states such as Utah, Wyoming, and Colorado, observe a 0.4 percentage point407

drop in market shares when Vermont receives a 1 percent increase in snowpack. This is likely due to Vermont408

skiers staying in their own state when conditions are good, but traveling to western states when conditions409

are bad.410
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Appendices for “A Recreation Demand Model for Mountain541

Snowpack”)542

A Additional Tables543

Table A1: Results of Different Clustered Standard Errors

(1) (2) (3)
Clustered. SE: Property Market State×WoS

Snowpack 0.01242∗∗∗ 0.01242∗∗∗ 0.01242∗∗∗

(0.0006) (0.0039) (0.0036)
Snowpack2 -0.00004∗∗∗ -0.00004∗ -0.00004∗∗

(0.000006) (0.00002) (0.00002)

Property j FE Yes Yes Yes
Day-of-sample FE Yes Yes Yes
# of Clusters 33,636 94 908

Observations 6,610,513 6,610,513 6,610,513
McFadden ρ2 0.29 0.29 0.29
BIC 6,770,282.87 6,770,282.87 6,770,282.87
F-stat (Wald: IV) 204.02∗∗∗ 204.02∗∗∗ 204.02∗∗∗

Standard errors in parentheses ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Note: I explore various levels of clustering to address possible correlation across observations544

in the sample. Column 1 is the most generous where correlation is assumed to be zero across545

properties. Column 2, what is used in our primary analysis, clusters standard errors at the546

market-level. This assumes that observations within a market are correlated, but independent547

across markets. Column 3 uses state×week-of-sample to cluster observations. I introduce548

the interaction to ensure a sufficient number of clusters from 13 with state only, to 908 with549

state×week-of-sample (Wooldridge, 2006; Abadie et al., 2017).550
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Table A2: Marginal Utilities from Trip Decisions (Contd. from Table ??)

(1) (2) (3)
National West-East NSAA
Average Regions Regions

Weekly Snowfall -76.8167∗∗∗ -75.8032∗∗∗ -72.7571∗∗∗

(4.42007) (4.41590) (4.42725)
Weekly Snowfall2 24.6878∗∗∗ 24.6754∗∗∗ 27.7108∗∗∗

(2.91943) (2.91925) (2.89935)
New Snow 1”-3” 0.00991∗∗∗ 0.00971∗∗ 0.00469

(0.00380) (0.00380) (0.00380)
New Snow 3”-6” 0.03108∗∗∗ 0.03075∗∗∗ 0.04140∗∗∗

(0.00480) (0.00480) (0.00479)
New Snow 6”-9” -0.00465 -0.00369 -0.03613∗∗∗

(0.00767) (0.00767) (0.00762)
New Snow 9”-12” 0.01412 0.01625 0.02708∗∗

(0.01143) (0.01142) (0.01143)
New Snow 12”-15” 0.03575∗∗ 0.03572∗∗ 0.02777∗

(0.01438) (0.01437) (0.01427)
New Snow 15”+ -0.11925∗∗∗ -0.11490∗∗∗ -0.07928∗∗∗

(0.01392) (0.01391) (0.01377)
Temperature 134.869∗∗∗ 138.680∗∗∗ 224.504∗∗∗

(20.4386) (20.4222) (20.2170)
Temperature2 -28.4468∗∗∗ -28.9883∗∗∗ -22.9429∗∗

(10.8402) (10.8460) (10.9288)
Market Size 62.6419 49.9075 78.1899

(55.8591) (55.9710) (55.9961)
Market Size2 30.6767 47.1165∗ -10.1123

(27.8445) (28.1546) (28.3001)
Snowpack Outside Option -294.178∗∗∗ -266.350∗∗∗ 60.7485∗

(31.7884) (32.3183) (33.5216)
Snowpack Outside Option2 -69.3880∗∗∗ -74.2635∗∗∗ -138.305∗∗∗

(18.9525) (19.0039) (19.2005)
Weekly Snowfall Outside Option 36.5520∗∗∗ 34.3089∗∗∗ 34.4416∗∗∗

(5.48513) (5.49552) (5.50445)
Weekly Snowfall Outside Option2 -37.9710∗∗∗ -36.2836∗∗∗ -10.6445∗∗∗

(3.97956) (3.97491) (3.97820)
Temperature Outside Option -243.839∗∗∗ -234.195∗∗∗ -324.261∗∗∗

(20.5960) (20.5793) (20.3095)
Temperature Outside Option2 -110.698∗∗∗ -110.660∗∗∗ -108.231∗∗∗

(10.7968) (10.8026) (10.8360)
Property j FE Yes Yes Yes
Day-of-sample FE Yes Yes Yes
Clustered. SE Market Market Market
Observations 6,610,513 6,610,513 6,610,513
McFadden ρ2 0.2857 0.29143 0.2857
BIC 6,770,282.87 6,770,005.61 6,760,126.80

Standard errors in parentheses ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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B Logit, PPML, and LPM551

Table A6: Results from Logit, PPML, and LPM

(1) (2) (3)
Logit PPML LPM

Panel A: Marginal Utilities

Snowpack 0.01242∗∗∗ 0.00610∗∗ 0.00178∗∗∗

(0.00392) (0.00218) (0.00052)
Snowpack2 -0.00004∗ -0.00002∗ -0.000007∗

(0.00002) (0.00001) (0.000003)
Price (2SLS) −0.00526∗∗∗ −0.00280∗∗∗ −0.00081∗∗∗

(0.00077) (0.00039) (0.00012)

Property j FE Yes Yes Yes
Day-of-sample FE Yes Yes Yes
Clustered. SE Market Market Market

Observations 6,610,513 6,610,513 6,610,513
McFadden ρ2 0.28 0.16 0.29
BIC 6,770,282.87 8,257,517.81 6,760,126.80
F-stat (Wald: IV) 204.02∗∗∗ 241.60∗∗∗ 410.90∗∗∗

Panel B: Marginal Willingness to Pay

Snowpack $2.40 $2.23 $2.24
[2.38, 2.43] [2.22, 2.24] [2.22, 2.26]

Snowpack2 -$0.01 -$0.01 -$0.01
[-0.01, -0.01] [-0.01, -0.01] [-0.01, -0.01]

Standard errors in parentheses ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Krinsky-Robb 95% confidence intervals in brackets

Note: I explore to what degree the specification of logit, Poisson Pseudo-Maximum Likelihood,552

and linear probability models influence the policy-relevant metric of willingness to pay. While553

marginal utilities are not directly comparable (MIXL and logit are represented as standard554

odds ratios), I find no distinguishable difference in the resulting MWTP.555
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C Additional Figures556

Figure A1: NSAA Resort Regions

Note: Figure A1 presents the regions across the U.S. as defined by the NSAA (NSAA, 2018).557

These are the regions specified in equation 7. I combine California, Nevada, Oregon, and558

Washington to be a combined NSAA region called “West-coast”.559
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Figure A2: Spatial Distribution of Airbnb Properties in Aspen, CO

Note: Figure A2 presents the spatial distribution of short term rental properties within a560

10km buffer near Aspen, Colorado.561
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